
EXAM Version Control

Model-based versioning of test cases

 » Archiving release versions of test projects
 » Decoupling of development version and productive version
 » Parallel development and execution of several development branches

www.micronova.de

EXAM Version Control

Testing Solutions

EXAM Version Control
Reliable validation of electronic control units encompasses not only technical but also numerous
regulatory requirements such as ISO 26262 or Automotive SPICE. Furthermore, coordinating
parallel development work on libraries and test cases presents a challenge.

EXAM Version Control enables safe working on “live systems” through
model-based versioning of test cases. The ModelDomains intro-
duced with EXAM 4.4 serve as repositories. The versioned elements
reside within these ModelDomains, allowing certain work states of
related elements to be fixed.

In Addition, configurations can be used to define the view of a
model. Thus, it is determined which ModelDomains should be vis-
ible to the respective user in which version. Version management
also minimizes the effort and risk involved with changes to li-
braries, since all element changes remain traceable through a con-
sistent history description.

EXAM Version Control thus allows the associated test cases to be
restored and re-executed for each software version of an ECU
or test object.

EXAM Version Control

Testing Solutions

Benefits of EXAM Version Control
Protection during test case development
EXAM Version Control allows to freeze work states of related elements and thus save
changes to a test case or a group of test cases. This not only applies to the version after
the last change, but also to any intermediate status. This means that you can always
revert to a stable version if there are problems with the current one.

Archiving test projects
Related element versions of a test project can be defined and permanently tagged
using baselines.

Parallel use of several development branches
EXAM Version Control provides the option to access versioned model states. If changes
or further developments are necessary for such builds, a separate development branch
can be created and edited on this basis.

Accelerating and stabilizing the development
process
Developing tests and libraries in parallel improves workflows. The possibility of
separating work states and released test cases stabilizes test execution.

Early evaluation of functions
The simple reproduction of specific test states allows the experimental further
development of older versions and thus an early check on new functions - with
no risk to productive operation.

How it works

 » The ModelDomains introduced with EXAM 4.4 serve as repositories for the model-based version management
of test cases. Versioned elements reside within these ModelDomains. This allows to freeze work states of related
elements as baselines.

 » In addition, the view of a model can be defined via so-called ModelConfigurations. This determines the version
in which the required ModelDomains are visible to the user. They also form the basis for test execution and
further development.

 » The version history for model elements including corresponding comments can be traced in the History View.
Different versions of an element can also be opened directly for comparison. Old versions can be restored.

 » Branches enable the further development of test cases using baselines.

Licensing model
Versioning can be activated for each model. EXAM Version Control is available under a floating license. Every EXAM
client wishing to connect to a versioned model requires a license. However, licenses are not tied to specific EXAM
models or users.

Both rental and purchase licenses are available in different license packages with graduated pricing. For an individual
offer please contact sales-testing@micronova.de.

MicroNova
Unterfeldring 6 - D-85256 Vierkirchen

Phone: +49 8139 9300-0
Fax: +49 8139 9300-80

EMail: sales-testing@micronova.de

www.micronova.de

Feature EXAM EXAM incl. Version Control

Modeling of test cases

Executing TestSuites

Evaluation of test reports

Creation of model configurations

Versioning of model elements

Creating Baselines

Creating Branches

Restore model elements

