NovaCarts Battery

Exact cell simulation for validating battery management systems (BMS)


Overview

NovaCarts Battery represents one of the most powerful and precise cell simulation systems on the market. This is leveraged by the modular and scalable hardware in the loop (HiL) system to create optimum conditions for developing new battery management functions such as state-of-charge (SoC) and state-of-health (SoH) controls, active cell balancing and electrochemical impedance spectroscopy.

NovaCarts Battery is ideal for all lithium-based batteries, including solid-state and starter types, and can also be extended to cover future battery technologies very cost-effectively via firmware update –ideal conditions for testing current and future battery management systems.

Further Information


Advantages

  • Extremely versatile: One HiL system for complete and extensive BMS tests for all lithium-based batteries, including solid-state batteries and starter types
  • Sustainable: NovaCarts Battery can be swiftly and easily customized for future applications via firmware update (e.g. new battery technologies and battery management functions)
  • Low-cost customization: The parameters and controls used for cell simulation can be modified directly in the software – eliminating the need for costly hardware replacements
  • High scalability: A modular design and numerous enhancement options allow the system to be adapted to various test requirements (e.g. low-voltage / high-voltage batteries, power emulation / powerless simulation)
  • Shorter commissioning and changeover times: New NovaCarts Battery HiL systems and new NovaCarts components can be swiftly and easily configured thanks to the use of the same tool chain.

Features

  • All-digital cell simulation thanks to powerful field programmable gate arrays (FPGAs) on the NovaCarts cell simulation board
  • High-precision representation of current steps and voltage drops
  • Software-controlled internal resistance of cells can be modified swiftly and in real-time to simulate e.g. lithium-ion solid-state batteries
  • The open and powerful model platform with cycle times starting from a few microseconds and highly dynamic I/O allows new BMS algorithms to be developed (e.g. state-of-health (SoH), state-of-charge (SoC), electrochemical impedance spectroscopy)
  • Significantly more accurate calculation of the current battery status thanks to an electrochemical simulation model
  • Exact reproduction of dynamic cell behavior in the start-up process thanks to a high update rate of up to 10 kilohertz
  • The ability to simulate capacitive and inductive balancing mechanisms allows BMS to be validated with active and passive cell balancing
  • High-voltage power emulation (up to 1,000 volts) enables tests with a final power output stage. Measurements on the system are possible thanks to an intelligent safety concept.
  • Can be used with real elements / dummy loads and rest-bus simulation
  • High-resolution shunt simulation (16 bit)
  • High signal quality thanks to short and stable connections to the control unit and direct to output for associated error simulation
  • Resistance simulation for reproducing temperature sensors with negative or positive temperature coefficients (NTCs and PTCs)
  • Special modules available for the simulation of intermediate circuit capacities and insulation faults

Contact


Michael Seeger
Sales Manager Testing Solutions
sales-testing@who-needs-spam.micronova.de
+49 8139 9300-0

Mehr

News: Customer magazine InNOVAtion 02-2018 more


Press Release: CPCM from MicroNova is now COM5.Mobile more


Recent job advertisements: Technical Lead Java EE more

MicroNova - Support


MicroNova AG
Unterfeldring 6
85256 Vierkirchen

    +49 8139 9300-0
    info@who-needs-spam.micronova.de

» How to find us